Equivariant Ehrhart theory (1003.5875v3)
Abstract: Motivated by representation theory and geometry, we introduce and develop an equivariant generalization of Ehrhart theory, the study of lattice points in dilations of lattice polytopes. We prove representation-theoretic analogues of numerous classical results, and give applications to the Ehrhart theory of rational polytopes and centrally symmetric polytopes. We also recover a character formula of Procesi, Dolgachev, Lunts and Stembridge for the action of a Weyl group on the cohomology of a toric variety associated to a root system.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.