Papers
Topics
Authors
Recent
2000 character limit reached

A Novel Approach For Discovery Multi Level Fuzzy Association Rule Mining (1003.4068v1)

Published 22 Mar 2010 in cs.DB

Abstract: Finding multilevel association rules in transaction databases is most commonly seen in is widely used in data mining. In this paper, we present a model of mining multilevel association rules which satisfies the different minimum support at each level, we have employed fuzzy set concepts, multi-level taxonomy and different minimum supports to find fuzzy multilevel association rules in a given transaction data set. Apriori property is used in model to prune the item sets. The proposed model adopts a topdown progressively deepening approach to derive large itemsets. This approach incorporates fuzzy boundaries instead of sharp boundary intervals. An example is also given to demonstrate and support that the proposed mining algorithm can derive the multiple-level association rules under different supports in a simple and effective manner.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.