Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 45 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

Mean Field Analysis of Stochastic Neural Network Models with Synaptic Depression (1003.1196v1)

Published 5 Mar 2010 in cond-mat.dis-nn and q-bio.NC

Abstract: We investigated the effects of synaptic depression on the macroscopic behavior of stochastic neural networks. Dynamical mean field equations were derived for such networks by taking the average of two stochastic variables: a firing state variable and a synaptic variable. In these equations, their average product is decoupled as the product of averaged them because the two stochastic variables are independent. We proved the independence of these two stochastic variables assuming that the synaptic weight is of the order of 1/N with respect to the number of neurons N. Using these equations, we derived macroscopic steady state equations for a network with uniform connections and a ring attractor network with Mexican hat type connectivity and investigated the stability of the steady state solutions. An oscillatory uniform state was observed in the network with uniform connections due to a Hopf instability. With the ring network, high-frequency perturbations were shown not to affect system stability. Two mechanisms destabilize the inhomogeneous steady state, leading two oscillatory states. A Turing instability leads to a rotating bump state, while a Hopf instability leads to an oscillatory bump state, which was previous unreported. Various oscillatory states take place in a network with synaptic depression depending on the strength of the interneuron connections.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.