Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Kernel methods and minimum contrast estimators for empirical deconvolution (1003.0315v1)

Published 1 Mar 2010 in stat.ME, math.ST, and stat.TH

Abstract: We survey classical kernel methods for providing nonparametric solutions to problems involving measurement error. In particular we outline kernel-based methodology in this setting, and discuss its basic properties. Then we point to close connections that exist between kernel methods and much newer approaches based on minimum contrast techniques. The connections are through use of the sinc kernel for kernel-based inference. This `infinite order' kernel is not often used explicitly for kernel-based deconvolution, although it has received attention in more conventional problems where measurement error is not an issue. We show that in a comparison between kernel methods for density deconvolution, and their counterparts based on minimum contrast, the two approaches give identical results on a grid which becomes increasingly fine as the bandwidth decreases. In consequence, the main numerical differences between these two techniques are arguably the result of different approaches to choosing smoothing parameters.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube