Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Density Deconvolution for Generalized Skew-Symmetric Distributions (1706.01507v1)

Published 5 Jun 2017 in stat.ME

Abstract: This paper develops a density deconvolution estimator that assumes the density of interest is a member of the generalized skew-symmetric (GSS) family of distributions. Estimation occurs in two parts: a skewing function, as well as location and scale parameters must be estimated. A kernel method is proposed for estimating the skewing function. The mean integrated square error (MISE) of the resulting GSS deconvolution estimator is derived. Based on derivation of the MISE, two bandwidth estimation methods for estimating the skewing function are also proposed. A generalized method of moments (GMM) approach is developed for estimation of the location and scale parameters. The question of multiple solutions in applying the GMM is also considered, and two solution selection criteria are proposed. The GSS deconvolution estimator is further investigated in simulation studies and is compared to the nonparametric deconvolution estimator. For most simulation settings considered, the GSS estimator has performance superior to the nonparametric estimator.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.