Papers
Topics
Authors
Recent
2000 character limit reached

Neighborhood radius estimation in Variable-neighborhood Random Fields

Published 25 Feb 2010 in math.PR, math.ST, and stat.TH | (1002.4850v5)

Abstract: We consider random fields defined by finite-region conditional probabilities depending on a neighborhood of the region which changes with the boundary conditions. To predict the symbols within any finite region it is necessary to inspect a random number of neighborhood symbols which might change according to the value of them. In analogy to the one dimensional setting we call these neighborhood symbols the context of the region. This framework is a natural extension, to d-dimensional fields, of the notion of variable-length Markov chains introduced by Rissanen (1983) in his classical paper. We define an algorithm to estimate the radius of the smallest ball containing the context based on a realization of the field. We prove the consistency of this estimator. Our proofs are constructive and yield explicit upper bounds for the probability of wrong estimation of the radius of the context.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.