Papers
Topics
Authors
Recent
2000 character limit reached

Feature Importance in Bayesian Assessment of Newborn Brain Maturity from EEG

Published 24 Feb 2010 in cs.AI | (1002.4522v1)

Abstract: The methodology of Bayesian Model Averaging (BMA) is applied for assessment of newborn brain maturity from sleep EEG. In theory this methodology provides the most accurate assessments of uncertainty in decisions. However, the existing BMA techniques have been shown providing biased assessments in the absence of some prior information enabling to explore model parameter space in details within a reasonable time. The lack in details leads to disproportional sampling from the posterior distribution. In case of the EEG assessment of brain maturity, BMA results can be biased because of the absence of information about EEG feature importance. In this paper we explore how the posterior information about EEG features can be used in order to reduce a negative impact of disproportional sampling on BMA performance. We use EEG data recorded from sleeping newborns to test the efficiency of the proposed BMA technique.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.