Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

Mining Statistically Significant Substrings Based on the Chi-Square Measure (1002.4315v2)

Published 23 Feb 2010 in cs.DB

Abstract: Given the vast reservoirs of data stored worldwide, efficient mining of data from a large information store has emerged as a great challenge. Many databases like that of intrusion detection systems, web-click records, player statistics, texts, proteins etc., store strings or sequences. Searching for an unusual pattern within such long strings of data has emerged as a requirement for diverse applications. Given a string, the problem then is to identify the substrings that differs the most from the expected or normal behavior, i.e., the substrings that are statistically significant. In other words, these substrings are less likely to occur due to chance alone and may point to some interesting information or phenomenon that warrants further exploration. To this end, we use the chi-square measure. We propose two heuristics for retrieving the top-k substrings with the largest chi-square measure. We show that the algorithms outperform other competing algorithms in the runtime, while maintaining a high approximation ratio of more than 0.96.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.