Theoretical analysis for critical fluctuations of relaxation trajectory near a saddle-node bifurcation (1002.4239v2)
Abstract: A Langevin equation whose deterministic part undergoes a saddle-node bifurcation is investigated theoretically. It is found that statistical properties of relaxation trajectories in this system exhibit divergent behaviors near a saddle-node bifurcation point in the weak-noise limit, while the final value of the deterministic solution changes discontinuously at the point. A systematic formulation for analyzing a path probability measure is constructed on the basis of a singular perturbation method. In this formulation, the critical nature turns out to originate from the neutrality of exiting time from a saddle-point. The theoretical calculation explains results of numerical simulations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.