Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Geometric-arithmetic averaging of dyadic weights (1002.3197v1)

Published 17 Feb 2010 in math.CA

Abstract: The theory of (Muckenhoupt) weights arises in many areas of analysis, for example in connection with bounds for singular integrals and maximal functions on weighted spaces. We prove that a certain averaging process gives a method for constructing A_p weights from a measurably varying family of dyadic A_p weights. This averaging process is suggested by the relationship between the A_p weight class and the space of functions of bounded mean oscillation. The same averaging process also constructs weights satisfying reverse Holder (RH_p) conditions from families of dyadic RH_p weights, and extends to the polydisc as well.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.