Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Iterated Regret Minimization in Game Graphs (1002.1456v3)

Published 7 Feb 2010 in cs.GT

Abstract: Iterated regret minimization has been introduced recently by J.Y. Halpern and R. Pass in classical strategic games. For many games of interest, this new solution concept provides solutions that are judged more reasonable than solutions offered by traditional game concepts -- such as Nash equilibrium --. Although computing iterated regret on explicit matrix game is conceptually and computationally easy, nothing is known about computing the iterated regret on games whose matrices are defined implicitly using game tree, game DAG or, more generally game graphs. In this paper, we investigate iterated regret minimization for infinite duration two-player quantitative non-zero sum games played on graphs. We consider reachability objectives that are not necessarily antagonist. Edges are weighted by integers -- one for each player --, and the payoffs are defined by the sum of the weights along the paths. Depending on the class of graphs, we give either polynomial or pseudo-polynomial time algorithms to compute a strategy that minimizes the regret for a fixed player. We finally give algorithms to compute the strategies of the two players that minimize the iterated regret for trees, and for graphs with strictly positive weights only.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube