Papers
Topics
Authors
Recent
2000 character limit reached

Hall algebra approach to Drinfeld's presentation of quantum loop algebras (1002.1316v2)

Published 5 Feb 2010 in math.RT and math.QA

Abstract: The quantum loop algebra $U_{v}(\mathcal{L}\mathfrak{g})$ was defined as a generalization of the Drinfeld's new realization of the quantum affine algebra to the loop algebra of any Kac-Moody algebra $\mathfrak{g}$. It has been shown by Schiffmann that the Hall algebra of the category of coherent sheaves on a weighted projective line is closely related to the quantum loop algebra $U_{v}(\mathcal{L}\mathfrak{g})$, for some $\mathfrak{g}$ with a star-shaped Dynkin diagram. In this paper we study Drinfeld's presentation of $U_{v}(\mathcal{L}\mathfrak{g})$ in the double Hall algebra setting, based on Schiffmann's work. We explicitly find out a collection of generators of the double composition algebra $\mathbf{DC}(\Coh(\mathbb{X}))$ and verify that they satisfy all the Drinfeld relations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.