Papers
Topics
Authors
Recent
2000 character limit reached

Minimal sets of non-resonant torus homeomorphisms (1002.0364v3)

Published 1 Feb 2010 in math.DS

Abstract: As was known to H. Poincare, an orientation preserving circle homeomorphism without periodic points is either minimal or has no dense orbits, and every orbit accumulates on the unique minimal set. In the first case the minimal set is the circle, in the latter case a Cantor set. In this paper we study a two-dimensional analogue of this classical result: we classify the minimal sets of non-resonant torus homeomorphisms; that is, torus homeomorphisms isotopic to the identity for which the rotation set is a point with rationally independent irrational coordinates.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.