Robust and Trend-following Kalman Smoothers using Student's t (1001.3907v3)
Abstract: We propose two nonlinear Kalman smoothers that rely on Student's t distributions. The T-Robust smoother finds the maximum a posteriori likelihood (MAP) solution for Gaussian process noise and Student's t observation noise, and is extremely robust against outliers, outperforming the recently proposed l1-Laplace smoother in extreme situations (e.g. 50% or more outliers). The second estimator, which we call the T-Trend smoother, is able to follow sudden changes in the process model, and is derived as a MAP solver for a model with Student's t-process noise and Gaussian observation noise. We design specialized methods to solve both problems which exploit the special structure of the Student's t-distribution, and provide a convergence theory. Both smoothers can be implemented with only minor modifications to an existing L2 smoother implementation. Numerical results for linear and nonlinear models illustrating both robust and fast tracking applications are presented.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.