Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

RapidMind: Portability across Architectures and its Limitations (1001.1902v2)

Published 12 Jan 2010 in cs.PF and cs.PL

Abstract: Recently, hybrid architectures using accelerators like GPGPUs or the Cell processor have gained much interest in the HPC community. The RapidMind Multi-Core Development Platform is a programming environment that allows generating code which is able to seamlessly run on hardware accelerators like GPUs or the Cell processor and multicore CPUs both from AMD and Intel. This paper describes the ports of three mathematical kernels to RapidMind which are chosen as synthetic benchmarks and representatives of scientific codes. Performance of these kernels has been measured on various RapidMind backends (cuda, cell and x86) and compared to other hardware-specific implementations (using CUDA, Cell SDK and Intel MKL). The results give an insight in the degree of portability of RapidMind code and code performance across different architectures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.