2000 character limit reached
Renormalization for critical orders close to 2N (1001.1271v1)
Published 8 Jan 2010 in math.DS
Abstract: We study the dynamics of the renormalization operator acting on the space of pairs (v,t), where v is a diffeomorphism and t belongs to [0,1], interpreted as unimodal maps x-->v(q_t(x)), where q_t(x)=-2t|x|a+2t-1. We prove the so called complex bounds for sufficiently renormalizable pairs with bounded combinatorics. This allows us to show that if the critical exponent a is close to an even number then the renormalization operator has a unique fixed point. Furthermore this fixed point is hyperbolic and its codimension one stable manifold contains all infinitely renormalizable pairs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.