Similarity Measures, Author Cocitation Analysis, and Information Theory (0911.4292v1)
Abstract: The use of Pearson's correlation coefficient in Author Cocitation Analysis was compared with Salton's cosine measure in a number of recent contributions. Unlike the Pearson correlation, the cosine is insensitive to the number of zeros. However, one has the option of applying a logarithmic transformation in correlation analysis. Information calculus is based on both the logarithmic transformation and provides a non-parametric statistics. Using this methodology one can cluster a document set in a precise way and express the differences in terms of bits of information. The algorithm is explained and used on the data set which was made the subject of this discussion.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.