Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 195 tok/s Pro
2000 character limit reached

Topological De-Noising: Strengthening the Topological Signal (0910.5947v2)

Published 30 Oct 2009 in cs.CG and cs.NA

Abstract: Topological methods, including persistent homology, are powerful tools for analysis of high-dimensional data sets but these methods rely almost exclusively on thresholding techniques. In noisy data sets, thresholding does not always allow for the recovery of topological information. We present an easy to implement, computationally efficient pre-processing algorithm to prepare noisy point cloud data sets for topological data analysis. The topological de-noising algorithm allows for the recovery of topological information that is inaccessible by thresholding methods. We apply the algorithm to synthetically-generated noisy data sets and show the recovery of topological information which is impossible to obtain by thresholding. We also apply the algorithm to natural image data in R8 and show a very clean recovery of topological information previously only available with large amounts of thresholding. Finally, we discuss future directions for improving this algorithm using zig-zag persistence methods.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube