Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The monodromy pairing and discrete logarithm on the Jacobian of finite graphs (0907.4764v2)

Published 27 Jul 2009 in math.CO, cs.CR, and math.AG

Abstract: Every graph has a canonical finite abelian group attached to it. This group has appeared in the literature under a variety of names including the sandpile group, critical group, Jacobian group, and Picard group. The construction of this group closely mirrors the construction of the Jacobian variety of an algebraic curve. Motivated by this analogy, it was recently suggested by Norman Biggs that the critical group of a finite graph is a good candidate for doing discrete logarithm based cryptography. In this paper, we study a bilinear pairing on this group and show how to compute it. Then we use this pairing to find the discrete logarithm efficiently, thus showing that the associated cryptographic schemes are not secure. Our approach resembles the MOV attack on elliptic curves.

Citations (25)

Summary

We haven't generated a summary for this paper yet.