Papers
Topics
Authors
Recent
2000 character limit reached

Abelian networks III. The critical group

Published 30 Aug 2014 in cs.FL, cond-mat.stat-mech, and math.CO | (1409.0170v2)

Abstract: The critical group of an abelian network is a finite abelian group that governs the behavior of the network on large inputs. It generalizes the sandpile group of a graph. We show that the critical group of an irreducible abelian network acts freely and transitively on recurrent states of the network. We exhibit the critical group as a quotient of a free abelian group by a subgroup containing the image of the Laplacian, with equality in the case that the network is rectangular. We generalize Dhar's burning algorithm to abelian networks, and estimate the running time of an abelian network on an arbitrary input up to a constant additive error.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.