Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete logarithm problem in some families of sandpile groups (2011.08296v1)

Published 16 Nov 2020 in math.CO and cs.CR

Abstract: Biggs proposed the sandpile group of certain modified wheel graphs for cryptosystems relying on the difficulty of the discrete logarithm problem. Blackburn and independently Shokrieh showed that the discrete logarithm problem is efficiently solvable. We study Shokrieh's method in cases of graphs such that the sandpile group is not cyclic, namely the square cycle graphs and the wheel graphs. Knowing generators of the group or the form of the pseudoinverse of the Laplacian matrix makes the problem more vulnerable. We also consider the discrete logarithm problem in case of the so-called subdivided banana graphs. In certain cases the sandpile group is cyclic and a generator is known and one can solve the discrete logarithm problem without computing the pseudoinverse of the Laplacian matrix.

Summary

We haven't generated a summary for this paper yet.