Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pairings from a tensor product point of view (1304.5779v2)

Published 21 Apr 2013 in math.RA, cs.CR, and math.GR

Abstract: Pairings are particular bilinear maps, and as any bilinear maps they factor through the tensor product as group homomorphisms. Besides, nothing seems to prevent us to construct pairings on other abelian groups than elliptic curves or more general abelian varieties. The point of view adopted in this contribution is based on these two observations. Thus we present an elliptic curve free study of pairings which is essentially based on tensor products of abelian groups (or modules). Tensor products of abelian groups are even explicitly computed under finiteness conditions. We reveal that the existence of pairings depends on the non-degeneracy of some universal bilinear map, called the canonical bilinear map. In particular it is shown that the construction of a pairing on $A\times A$ is always possible whatever a finite abelian group $A$ is. We also propose some new constructions of pairings, one of them being based on the notion of group duality which is related to the concept of non-degeneracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.