The Pattern Matrix Method (Journal Version) (0906.4291v1)
Abstract: We develop a novel and powerful technique for communication lower bounds, the pattern matrix method. Specifically, fix an arbitrary function f:{0,1}n->{0,1} and let A_f be the matrix whose columns are each an application of f to some subset of the variables x_1,x_2,...,x_{4n}. We prove that A_f has bounded-error communication complexity Omega(d), where d is the approximate degree of f. This result remains valid in the quantum model, regardless of prior entanglement. In particular, it gives a new and simple proof of Razborov's breakthrough quantum lower bounds for disjointness and other symmetric predicates. We further characterize the discrepancy, approximate rank, and approximate trace norm of A_f in terms of well-studied analytic properties of f, broadly generalizing several recent results on small-bias communication and agnostic learning. The method of this paper has recently enabled important progress in multiparty communication complexity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.