2000 character limit reached
On convex problems in chance-constrained stochastic model predictive control
Published 21 May 2009 in math.OC | (0905.3447v1)
Abstract: We investigate constrained optimal control problems for linear stochastic dynamical systems evolving in discrete time. We consider minimization of an expected value cost over a finite horizon. Hard constraints are introduced first, and then reformulated in terms of probabilistic constraints. It is shown that, for a suitable parametrization of the control policy, a wide class of the resulting optimization problems are convex, or admit reasonable convex approximations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.