Papers
Topics
Authors
Recent
2000 character limit reached

Algebraic construction of the Darboux matrix revisited (0904.3987v1)

Published 25 Apr 2009 in nlin.SI and math-ph

Abstract: We present algebraic construction of Darboux matrices for 1+1-dimensional integrable systems of nonlinear partial differential equations with a special stress on the nonisospectral case. We discuss different approaches to the Darboux-Backlund transformation, based on different lambda-dependencies of the Darboux matrix: polynomial, sum of partial fractions, or the transfer matrix form. We derive symmetric N-soliton formulas in the general case. The matrix spectral parameter and dressing actions in loop groups are also discussed. We describe reductions to twisted loop groups, unitary reductions, the matrix Lax pair for the KdV equation and reductions of chiral models (harmonic maps) to SU(n) and to Grassmann spaces. We show that in the KdV case the nilpotent Darboux matrix generates the binary Darboux transformation. The paper is intended as a review of known results (usually presented in a novel context) but some new results are included as well, e.g., general compact formulas for N-soliton surfaces and linear and bilinear constraints on the nonisospectral Lax pair matrices which are preserved by Darboux transformations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.