Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deceptiveness and Neutrality - the ND family of fitness landscapes (0901.3769v1)

Published 23 Jan 2009 in cs.AI

Abstract: When a considerable number of mutations have no effects on fitness values, the fitness landscape is said neutral. In order to study the interplay between neutrality, which exists in many real-world applications, and performances of metaheuristics, it is useful to design landscapes which make it possible to tune precisely neutral degree distribution. Even though many neutral landscape models have already been designed, none of them are general enough to create landscapes with specific neutral degree distributions. We propose three steps to design such landscapes: first using an algorithm we construct a landscape whose distribution roughly fits the target one, then we use a simulated annealing heuristic to bring closer the two distributions and finally we affect fitness values to each neutral network. Then using this new family of fitness landscapes we are able to highlight the interplay between deceptiveness and neutrality.

Citations (28)

Summary

We haven't generated a summary for this paper yet.