Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-Consistent Sparse Estimation through the Bootstrap (0901.3202v1)

Published 21 Jan 2009 in cs.LG and stat.ML

Abstract: We consider the least-square linear regression problem with regularization by the $\ell1$-norm, a problem usually referred to as the Lasso. In this paper, we first present a detailed asymptotic analysis of model consistency of the Lasso in low-dimensional settings. For various decays of the regularization parameter, we compute asymptotic equivalents of the probability of correct model selection. For a specific rate decay, we show that the Lasso selects all the variables that should enter the model with probability tending to one exponentially fast, while it selects all other variables with strictly positive probability. We show that this property implies that if we run the Lasso for several bootstrapped replications of a given sample, then intersecting the supports of the Lasso bootstrap estimates leads to consistent model selection. This novel variable selection procedure, referred to as the Bolasso, is extended to high-dimensional settings by a provably consistent two-step procedure.

Citations (32)

Summary

We haven't generated a summary for this paper yet.