Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Prediction of Platinum Prices Using Dynamically Weighted Mixture of Experts (0812.2785v1)

Published 15 Dec 2008 in cs.AI

Abstract: Neural networks are powerful tools for classification and regression in static environments. This paper describes a technique for creating an ensemble of neural networks that adapts dynamically to changing conditions. The model separates the input space into four regions and each network is given a weight in each region based on its performance on samples from that region. The ensemble adapts dynamically by constantly adjusting these weights based on the current performance of the networks. The data set used is a collection of financial indicators with the goal of predicting the future platinum price. An ensemble with no weightings does not improve on the naive estimate of no weekly change; our weighting algorithm gives an average percentage error of 63% for twenty weeks of prediction.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.