Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Use of Rapid Probabilistic Argumentation for Ranking on Large Complex Networks (0802.3293v1)

Published 22 Feb 2008 in cs.AI and cs.IR

Abstract: We introduce a family of novel ranking algorithms called ERank which run in linear/near linear time and build on explicitly modeling a network as uncertain evidence. The model uses Probabilistic Argumentation Systems (PAS) which are a combination of probability theory and propositional logic, and also a special case of Dempster-Shafer Theory of Evidence. ERank rapidly generates approximate results for the NP-complete problem involved enabling the use of the technique in large networks. We use a previously introduced PAS model for citation networks generalizing it for all networks. We propose a statistical test to be used for comparing the performances of different ranking algorithms based on a clustering validity test. Our experimentation using this test on a real-world network shows ERank to have the best performance in comparison to well-known algorithms including PageRank, closeness, and betweenness.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube