Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Normalizing Intuitionistic Set Theory with Inaccessible Sets

Published 13 Jul 2007 in cs.LO | (0707.1981v3)

Abstract: We propose a set theory strong enough to interpret powerful type theories underlying proof assistants such as LEGO and also possibly Coq, which at the same time enables program extraction from its constructive proofs. For this purpose, we axiomatize an impredicative constructive version of Zermelo-Fraenkel set theory IZF with Replacement and $\omega$-many inaccessibles, which we call \izfio. Our axiomatization utilizes set terms, an inductive definition of inaccessible sets and the mutually recursive nature of equality and membership relations. It allows us to define a weakly-normalizing typed lambda calculus corresponding to proofs in \izfio according to the Curry-Howard isomorphism principle. We use realizability to prove the normalization theorem, which provides a basis for program extraction capability.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.