Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adding an Abstraction Barrier to ZF Set Theory (2005.13954v1)

Published 28 May 2020 in cs.LO

Abstract: Much mathematical writing exists that is, explicitly or implicitly, based on set theory, often Zermelo-Fraenkel set theory (ZF) or one of its variants. In ZF, the domain of discourse contains only sets, and hence every mathematical object must be a set. Consequently, in ZF, with the usual encoding of an ordered pair ${\langle a, b\rangle}$, formulas like ${{a} \in \langle a, b \rangle}$ have truth values, and operations like ${\mathcal P (\langle a, b\rangle)}$ have results that are sets. Such 'accidental theorems' do not match how people think about the mathematics and also cause practical difficulties when using set theory in machine-assisted theorem proving. In contrast, in a number of proof assistants, mathematical objects and concepts can be built of type-theoretic stuff so that many mathematical objects can be, in essence, terms of an extended typed ${\lambda}$-calculus. However, dilemmas and frustration arise when formalizing mathematics in type theory. Motivated by problems of formalizing mathematics with (1) purely set-theoretic and (2) type-theoretic approaches, we explore an option with much of the flexibility of set theory and some of the useful features of type theory. We present ZFP: a modification of ZF that has ordered pairs as primitive, non-set objects. ZFP has a more natural and abstract axiomatic definition of ordered pairs free of any notion of representation. This paper presents axioms for ZFP, and a proof in ZF (machine-checked in Isabelle/ZF) of the existence of a model for ZFP, which implies that ZFP is consistent if ZF is. We discuss the approach used to add this abstraction barrier to ZF.

Citations (4)

Summary

We haven't generated a summary for this paper yet.