Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Informative Statistical Flow Inversion (0705.1939v1)

Published 14 May 2007 in cs.NI and cs.PF

Abstract: A problem which has recently attracted research attention is that of estimating the distribution of flow sizes in internet traffic. On high traffic links it is sometimes impossible to record every packet. Researchers have approached the problem of estimating flow lengths from sampled packet data in two separate ways. Firstly, different sampling methodologies can be tried to more accurately measure the desired system parameters. One such method is the sample-and-hold method where, if a packet is sampled, all subsequent packets in that flow are sampled. Secondly, statistical methods can be used to ``invert'' the sampled data and produce an estimate of flow lengths from a sample. In this paper we propose, implement and test two variants on the sample-and-hold method. In addition we show how the sample-and-hold method can be inverted to get an estimation of the genuine distribution of flow sizes. Experiments are carried out on real network traces to compare standard packet sampling with three variants of sample-and-hold. The methods are compared for their ability to reconstruct the genuine distribution of flow sizes in the traffic.

Citations (1)

Summary

We haven't generated a summary for this paper yet.