2000 character limit reached
Fault Classification in Cylinders Using Multilayer Perceptrons, Support Vector Machines and Guassian Mixture Models
Published 2 May 2007 in cs.AI | (0705.0197v1)
Abstract: Gaussian mixture models (GMM) and support vector machines (SVM) are introduced to classify faults in a population of cylindrical shells. The proposed procedures are tested on a population of 20 cylindrical shells and their performance is compared to the procedure, which uses multi-layer perceptrons (MLP). The modal properties extracted from vibration data are used to train the GMM, SVM and MLP. It is observed that the GMM produces 98%, SVM produces 94% classification accuracy while the MLP produces 88% classification rates.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.