Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gear fault diagnosis based on Gaussian correlation of vibrations signals and wavelet coefficients (1606.07981v1)

Published 26 Jun 2016 in cs.IT, cs.CE, cs.LG, and math.IT

Abstract: The features of non-stationary multi-component signals are often difficult to be extracted for expert systems. In this paper, a new method for feature extraction that is based on maximization of local Gaussian correlation function of wavelet coefficients and signal is presented. The effect of empirical mode decomposition (EMD) to decompose multi-component signals to intrinsic mode functions (IMFs), before using of local Gaussian correlation is discussed. The experimental vibration signals from two gearbox systems are used to show the efficiency of the presented method. Linear support vector machine (SVM) is utilized to classify feature sets extracted with the presented method. The obtained results show that the features extracted in this method have excellent ability to classify faults without any additional feature selection; it is also shown that EMD can improve or degrade features according to the utilized feature reduction method.

Citations (53)

Summary

We haven't generated a summary for this paper yet.