Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Social Annotation for Automatic Resource Discovery (0704.1675v1)

Published 12 Apr 2007 in cs.AI, cs.CY, and cs.DL

Abstract: Information integration applications, such as mediators or mashups, that require access to information resources currently rely on users manually discovering and integrating them in the application. Manual resource discovery is a slow process, requiring the user to sift through results obtained via keyword-based search. Although search methods have advanced to include evidence from document contents, its metadata and the contents and link structure of the referring pages, they still do not adequately cover information sources -- often called ``the hidden Web''-- that dynamically generate documents in response to a query. The recently popular social bookmarking sites, which allow users to annotate and share metadata about various information sources, provide rich evidence for resource discovery. In this paper, we describe a probabilistic model of the user annotation process in a social bookmarking system del.icio.us. We then use the model to automatically find resources relevant to a particular information domain. Our experimental results on data obtained from \emph{del.icio.us} show this approach as a promising method for helping automate the resource discovery task.

Citations (43)

Summary

We haven't generated a summary for this paper yet.