From Z(ω) or CMC(ℵ0,∞) to van Douwen’s Countable Choice Principle
Determine whether the principle Z(ω) implies vDCP(ω) and whether CMC(ℵ0,∞) implies vDCP(ω), in either ZF or ZFA.
References
(The status of each of “$\mathbf{Z}(\omega)\rightarrow\mathbf{vDCP}(\omega)$” and “$\mathbf{CMC}(\aleph_{0},\infty)\rightarrow\mathbf{vDCP}(\omega)$” is unknown in either $\mathbf{ZF}$ or $\mathbf{ZFA}$.)
— Constructing crowded Hausdorff $P$-spaces in set theory without the axiom of choice
(2510.11935 - Tachtsis et al., 13 Oct 2025) in Section 9, before Theorem s9:t2 and Theorem s9:CMC_notCUCDLO