Weak isomorphic reverse isoperimetry
Prove the weak isomorphic reverse isoperimetry conjecture: for every origin-symmetric convex body K ⊂ ℝ^n there exist a volume-preserving linear map A ∈ SL_n(ℝ) and an origin-symmetric convex body L ⊂ A K such that vol_n(L)^{1/n} ≳ vol_n(K)^{1/n} and iq(L) ≲ √n, with universal constants independent of K and n.
References
Conjecture[weak isomorphic reverse isoperimetry] For every origin-symmetric convex body K n there exist A\in SL_n() and an origin-symmetric convex body L A K that satisfies: \begin{equation*}\label{eq:conclusion of reverse iso} vol_{n}(L){\frac{1}{n}\gtrsim vol_{n}(K){\frac{1}{n}\qquad\mathrm{and}\qquad iq(L)\lesssim \sqrt{n}. \end{equation*}
— Approximate isoperimetry for convex polytopes
(2509.13898 - Ball et al., 17 Sep 2025) in Conjecture (weak isomorphic reverse isoperimetry), Introduction