Upper bound for the central two-step Laplace–Pólya ratio J_n(2)/J_n(0)
Prove that for every integer n ≥ 4, the Laplace–Pólya integral satisfies J_n(2)/J_n(0) ≤ n (n^2 − 2) / (n + 2)^3, where J_n(r) = (1/π) ∫_{−∞}^{∞} sinc^n(t) · cos(r t) dt with sinc(x) = sin(x)/x for x ≠ 0 and sinc(0) = 1.
References
Conjecture For every n\geq4, \begin{equation}\label{eq:J2/J0-better} \frac{J_n(2)}{J_n(0)}\leq\frac{n(n2-2)}{(n+2)3}. \end{equation}
eq:J2/J0-better:
                — Estimates on the decay of the Laplace-Pólya integral
                
                (2412.12835 - Ambrus et al., 17 Dec 2024) in Conjecture, Section 1.3 (New results)