Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Optimal Lagrange Interpolation Projectors and Legendre Polynomials (2405.01254v1)

Published 2 May 2024 in math.MG

Abstract: Let $K$ be a convex body in ${\mathbb R}n$, and let $\Pi_1({\mathbb R}n)$ be the space of polynomials in $n$ variables of degree at most $1$. Given an $(n+1)$-element set $Y\subset K$ in general position, we let $P_Y$ denote the Lagrange interpolation projector $P_Y: C(K)\to \Pi_1({\mathbb R}n)$ with nodes in $Y$. In this paper, we study upper and lower bounds for the norm of the optimal Lagrange interpolation projector, i.e., the projector with minimal operator norm where the minimum is taken over all $(n+1)$-element sets of interpolation nodes in $K$. We denote this minimal norm by $\theta_n(K)$. Our main result, Theorem 5.2, provides an explicit lower bound for the constant $\theta_n(K)$ for an arbitrary convex body $K\subset{\mathbb R}n$ and an arbitrary $n\ge 1$. We prove that $\theta_n(K)\ge \chi_n{-1}\left({{\rm vol}(K)}/{{\rm simp}(K)}\right)$ where $\chi_n$ is the Legendre polynomial of degree $n$ and ${\rm simp}(K)$ is the maximum volume of a simplex contained in $K$. The proof of this result relies on a geometric characterization of the Legendre polynomials in terms of the volumes of certain convex polyhedra. More specifically, we show that for every $\gamma\ge 1$ the volume of the set $\left{x=(x_1,...,x_n)\in{\mathbb R}n : \sum |x_j| +\left|1- \sum x_j\right|\le\gamma\right}$ is equal to ${\chi_n(\gamma)}/{n!}$. If $K$ is an $n$-dimensional ball, this approach leads us to the equivalence $\theta_n(K) \asymp\sqrt{n}$ which is complemented by the exact formula for $\theta_n(K)$. If $K$ is an $n$-dimensional cube, we obtain explicit efficient formulae for upper and lower bounds of the constant $\theta_n(K)$; moreover, for small $n$, these estimates enable us to compute the exact values of this constant.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: