Transcendental harmonic extension of the real non-attractive fixed point conjecture
Determine whether the real non-attractive fixed point conjecture extends to transcendental harmonic mappings f = h + \overline{g} in the complex plane where at least one of h or g is transcendental; specifically, ascertain whether such a function admits a \mathfrak{h}-fixed point \zeta = \mu + \overline{\omega} whose multipliers satisfy Re(h'(\mu)) \ge 1 and Re(g'(\omega)) \ge 1.
Sponsor
References
Transcendental Harmonic Functions: Does the conjecture hold for $f = h + \overline{g}$, where $h$ or $g$ is transcendental (e.g., $h(z) = ez$, $g(z) = z2$)? For $f(z) = ez + \overline{z2}$, no finite h-fixed points exist.
— Real non-attractive fixed point conjecture for complex harmonic functions
(2507.18414 - Vaseem, 24 Jul 2025) in Section 4 (Problems)