Rank formula in dimensions d ≥ 4 via proper {K_{d+2}, K_{d+2,d+2}}-covers
Establish that for every graph G and integer d ≥ 4, r_d(G) equals min_{F, C} {|F| + |⋃_{C∈C} C| − |C|}, where the minimum is over all F ⊆ E(G) and all proper covers C of G − F by edge-sets of subgraphs isomorphic to K_{d+2} or K_{d+2,d+2}.
References
Conjecture\nFor any graph $G$\n\begin{equation}\label{eq:cof2}\nr_d(G)=\min\left{\n|F|+\mbox{$\left|\bigcup_{C\in \mathcal{C}} C\right|$}-|\mathcal{C}|\n\right}\n\end{equation}\nwhere the minimum is taken over all $F\subseteq E$ and all proper\n${K_{d+2}, K_{d+2,d+2}}$-covers $\mathcal{C}$ of $G-F$.
eq:cof2:
$r_d(G)=\min\left\{ |F|+\mbox{$\left|\bigcup_{C\in } C\right|$}-|| \right\} $
                — Rigidity of Graphs and Frameworks: A Matroid Theoretic Approach
                
                (2508.11636 - Cruickshank et al., 29 Jul 2025) in Section 4.2 (Rigidity in dimensions at least four)