Optimality of parameter choices in Romanov’s discretisation bound
Determine whether the deterministic, r-dependent choice of rotation and distortion parameters used to produce the upper bound in the partition-only version of Romanov’s Theorem I is asymptotically optimal among all parameter choices in Romanov’s discretisation approach. Equivalently, decide whether, for every Hamburger (limit circle, det H ≡ 0) Hamiltonian, \log(max_{|z|=r} ||W_H(z)||) \asymp J(r), where J(r) denotes the infimum of upper bounds obtained from Romanov’s Theorem I over all admissible parameter sets.
References
It is unclear whether or not the choice of parameters mentioned in the previous item is optimal, or if making a different choice can lead to an asymptotically better upper bound.
— Spectral properties of canonical systems: discreteness and distribution of eigenvalues
(2504.00182 - Reiffenstein et al., 31 Mar 2025) in Remarks, Section “Romanov’s Theorem I: bound by discretisation” (U111)