Nondegeneracy of the relative p-Wasserstein distance for p>1
Establish whether the relative p-Wasserstein distance W_p defines a genuine metric on the space M of p-finite relative Radon measures for p>1; equivalently, prove that for any μ,ν ∈ M, W_p(μ,ν)=0 implies μ=ν.
References
It is an open question whether $W_p(\mu,\nu)=0$ implies that $\mu = \nu$ when $p > 1$.
                — Relative Optimal Transport
                
                (2411.05678 - Bubenik et al., 8 Nov 2024) in Subsection 6.2 (p-Wasserstein distance for metric pairs)