Dice Question Streamline Icon: https://streamlinehq.com

Multiparameter quantum Pfaffians and identity

Extend the definition of the quantum Pfaffian to the multiparameter quantum group setting with deformation parameters q_{ij}, by defining a consistent q_{ij}-skew-symmetry for matrix entries and constructing a corresponding quantum Pfaffian Pf_{q_{ij}}(A); then establish a generalized Pfaffian–determinant identity relating Pf_{q_{ij}}(A)^2 to the appropriate multiparameter quantum determinant in O_{q_{ij}}(GL_{2n}).

Information Square Streamline Icon: https://streamlinehq.com

Background

Most results in the paper and literature are formulated for single-parameter quantum groups U_q(g). Multiparameter deformations introduce a family of parameters q_{ij} that modify commutation relations and braided antisymmetry.

A coherent theory of multiparameter quantum Pfaffians compatible with q_{ij}-skew-symmetry and an accompanying Pfaffian–determinant identity would generalize the single-parameter case and likely require new combinatorial and categorical tools.

References

Extending the notion of the quantum Pfaffian to multiparameter settings, defining the appropriate q_{ij} -skew-symmetry conditions, and formulating a generalized Pfaffian–determinant identity is a challenging open problem.

A Quantum Analogue of the Pfaffian-Determinant Identity, An Algebraic and Geometric Study in the q-Skew-Symmetric Case (2508.11634 - Safadi, 24 Jul 2025) in Section 7.2 (Open Problems and Conjectures)