Multi-horizon Angular Momentum Penrose inequality
Establish an inequality for initial data containing n disjoint marginally outer trapped surfaces Σ_i with areas A_i and Komar angular momenta J_i, showing that the ADM mass satisfies M_ADM ≥ Σ_{i=1}^n sqrt(A_i/(16π) + 4π J_i^2/A_i).
Sponsor
References
Conjecture [Multi-Horizon Extension] For data with $n$ disjoint MOTS ${\Sigma_i}$ with areas $A_i$ and angular momenta $J_i$: \begin{equation} M_{ADM} \geq \sum_{i=1}n \sqrt{\frac{A_i}{16\pi} + \frac{4\pi J_i2}{A_i}. \end{equation}
— Angular Momentum Penrose Inequality
(2512.06918 - Xu, 7 Dec 2025) in Section “Extensions and Open Problems”, Subsection “Multiple Horizons”