Menger and strong Menger characterizations for Lindelöf spaces via Tukey order
Determine whether, for every Lindelöf space X, the equivalences hold: (a) X is Menger if and only if (X, K(X)) ≥T (ωω, K(ωω)); and (b) X is strong Menger if and only if (F(X), K(X)) ≥T (ωω, K(ωω)).
References
Question 3.5. Let X be a Lindelof space. Is it the case that X is Menger if and only if (X, K(X) }T (ww, K(w)? And is X strong Menger if and only if (F(X), K(X) }T (ww, K(ww)?
— The Shape of Compact Covers
(2401.00817 - Feng et al., 1 Jan 2024) in Question 3.5, Section 3.1