Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Shape of Compact Covers (2401.00817v1)

Published 1 Jan 2024 in math.GN

Abstract: For a space $X$ let $\mathcal{K}(X)$ be the set of compact subsets of $X$ ordered by inclusion. A map $\phi:\mathcal{K}(X) \to \mathcal{K}(Y)$ is a relative Tukey quotient if it carries compact covers to compact covers. When there is such a Tukey quotient write $(X,\mathcal{K}(X)) \ge_T (Y,\mathcal{K}(Y))$, and write $(X,\mathcal{K}(X)) =_T (Y,\mathcal{K}(Y))$ if $(X,\mathcal{K}(X)) \ge_T (Y,\mathcal{K}(Y))$ and vice versa. We investigate the initial structure of pairs $(X,\mathcal{K}(X))$ under the relative Tukey order, focusing on the case of separable metrizable spaces. Connections are made to Menger spaces. Applications are given demonstrating the diversity of free topological groups, and related free objects, over separable metrizable spaces. It is shown a topological group $G$ has the countable chain condition if it is either $\sigma$-pseudocompact or for some separable metrizable $M$, we have $\mathcal{K}(M) \ge_T (G,\mathcal{K}(G))$.

Summary

We haven't generated a summary for this paper yet.