Dice Question Streamline Icon: https://streamlinehq.com

Exact complexity of the maximum weight path problem

Determine the exact computational complexity of the maximum weight path problem with binary-encoded edge weights; specifically, given a directed graph with integer weights on edges and designated vertices s and t, establish the precise complexity class of computing the maximum-weight path from s to t.

Information Square Streamline Icon: https://streamlinehq.com

Background

The authors’ algorithmic framework for directedness uses maximum-weight path computations via matrix powering over the max-plus semiring. While they obtain AC1 procedures in their setting, they note that the general complexity of the maximum weight path problem (with binary-encoded weights) is unknown, referencing Cook’s taxonomy.

Clarifying the exact complexity of this path problem would sharpen the theoretical underpinnings of the paper’s AC1 upper bounds and inform broader parallel complexity results for weighted path computations.

References

Also, the complexity of the maximum weight path problem %with binary encoded weights is not known.

Directed Regular and Context-Free Languages (2401.07106 - Ganardi et al., 13 Jan 2024) in Conclusion