Krivelevich–Lew–Michaeli conjecture on maximal rigid dimension in G(n,p)
Establish that for any edge probability p(n) = ω(log n / n) and any fixed ε > 0, the Erdős–Rényi random graph G(n,p) is asymptotically almost surely d-rigid for every integer d < (1 − ε) n (1 − √(1 − p)).
References
For every p=\omega(\log n /n), and every fixed \varepsilon>0, a random graph G\sim G(n,p) is a.a.s d-rigid if d<(1-\varepsilon)n(1-\sqrt{1-p}).
                — On the Rigidity of Random Graphs in high-dimensional spaces
                
                (2412.13127 - Peled et al., 17 Dec 2024) in Conjecture \ref{conj:KLM}, Section 1 (Introduction)