KPS escape-of-mass conjecture in positive characteristic
Prove that for every irreducible polynomial P(t) in the polynomial ring F_q[t] over a finite field F_q and every quadratic irrational Laurent series Θ(t) in F_q((t^{-1})), the limit lim_{n→∞} liminf_{k→∞} ( max_{1≤i≤ℓ_k} { deg(A_i^{[Θ·P^k]}(t)) − n, 0 } ) / ( Σ_{i=1}^{ℓ_k} deg(A_i^{[Θ·P^k]}(t)) ) equals 1, where ℓ_k denotes the length of the periodic part of the continued fraction expansion of P^k(t)·Θ(t).
References
Conjecture [Conjecture 6]{KPS} For every irreducible polynomial P(t)\in \mathbb{F}q[t] and every quadratic irrational Laurent series \Theta(t)\in \mathbb{F}_q(!(t{-1})!), one has \lim{n\rightarrow \infty}\liminf_{k\rightarrow \infty}\frac{\max\left{deg\left(A_{i}{[\Theta\cdot Pk]}(t)\right)-n,0\right}}{\sum_{i=1}{\ell_{k}}deg\left(A_{i}{[\Theta\cdot Pk]}(t)\right)}=1, where, \ell_k is the length of the periodic part of the continued fraction expansion of Pk(t)\cdot \Theta(t).